Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant Hosts Modify Belowground Microbial Community Response to Extreme Drought.

Identifieur interne : 000207 ( Main/Exploration ); précédent : 000206; suivant : 000208

Plant Hosts Modify Belowground Microbial Community Response to Extreme Drought.

Auteurs : Allison M. Veach [États-Unis] ; Huaihai Chen [États-Unis] ; Zamin K. Yang [États-Unis] ; Audrey D. Labbe [États-Unis] ; Nancy L. Engle [États-Unis] ; Timothy J. Tschaplinski [États-Unis] ; Christopher W. Schadt [États-Unis] ; Melissa A. Cregger [Pays-Bas, États-Unis]

Source :

RBID : pubmed:32606021

Abstract

Drought stress negatively impacts microbial activity, but the magnitude of stress responses is likely dependent on a diversity of belowground interactions. Populus trichocarpa individuals and no-plant bulk soils were exposed to extended drought (∼0.03% gravimetric water content [GWC] after 12 days), rewet, and a 12-day "recovery" period to determine the effects of plant presence in mediating soil microbiome stability to water stress. Plant metabolomic analyses indicated that drought exposure increased host investment in C and N metabolic pathways (amino acids, fatty acids, phenolic glycosides) regardless of recovery. Several metabolites positively correlated with root-associated microbial alpha-diversity, but not those of soil communities. Soil bacterial community composition shifted with P. trichocarpa presence and with drought relative to irrigated controls, whereas soil fungal composition shifted only with plant presence. However, root fungal communities strongly shifted with drought, whereas root bacterial communities changed to a lesser degree. The proportion of bacterial water-stress opportunistic operational taxonomic units (OTUs) (enriched counts in drought) was high (∼11%) at the end of drying phases and maintained after rewet and recovery phases in bulk soils, but it declined over time in soils with plants present. For root fungi, opportunistic OTUs were high at the end of recovery in drought treatments (∼17% abundance), although relatively not responsive in soils, particularly planted soils (<0.5% abundance for sensitive or opportunistic). These data indicate that plants modulate soil and root-associated microbial drought responses via tight plant-microbe linkages during extreme drought scenarios, but trajectories after extreme drought vary with plant habitat and microbial functional groups.IMPORTANCE Climate change causes significant alterations in precipitation and temperature regimes that are predicted to become more extreme throughout the next century. Microorganisms are important members within ecosystems, and how they respond to these changing abiotic stressors has large implications for the functioning of ecosystems, the recycling of nutrients, and the health of the aboveground plant community. Drought stress negatively impacts microbial activity, but the magnitude of this stress response may be dependent on above- and belowground interactions. This study demonstrates that beneficial associations between plants and microbes can enhance tolerance to abiotic stress.

DOI: 10.1128/mSystems.00092-20
PubMed: 32606021
PubMed Central: PMC7329318


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant Hosts Modify Belowground Microbial Community Response to Extreme Drought.</title>
<author>
<name sortKey="Veach, Allison M" sort="Veach, Allison M" uniqKey="Veach A" first="Allison M" last="Veach">Allison M. Veach</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Huaihai" sort="Chen, Huaihai" uniqKey="Chen H" first="Huaihai" last="Chen">Huaihai Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zamin K" sort="Yang, Zamin K" uniqKey="Yang Z" first="Zamin K" last="Yang">Zamin K. Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Labbe, Audrey D" sort="Labbe, Audrey D" uniqKey="Labbe A" first="Audrey D" last="Labbe">Audrey D. Labbe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Engle, Nancy L" sort="Engle, Nancy L" uniqKey="Engle N" first="Nancy L" last="Engle">Nancy L. Engle</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schadt, Christopher W" sort="Schadt, Christopher W" uniqKey="Schadt C" first="Christopher W" last="Schadt">Christopher W. Schadt</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Microbiology, University of Tennessee, Knoxville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microbiology, University of Tennessee, Knoxville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cregger, Melissa A" sort="Cregger, Melissa A" uniqKey="Cregger M" first="Melissa A" last="Cregger">Melissa A. Cregger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA creggerma@ornl.gov.</nlm:affiliation>
<country wicri:rule="url">Pays-Bas</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<wicri:noRegion>Tennessee</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32606021</idno>
<idno type="pmid">32606021</idno>
<idno type="doi">10.1128/mSystems.00092-20</idno>
<idno type="pmc">PMC7329318</idno>
<idno type="wicri:Area/Main/Corpus">000221</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000221</idno>
<idno type="wicri:Area/Main/Curation">000221</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000221</idno>
<idno type="wicri:Area/Main/Exploration">000221</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant Hosts Modify Belowground Microbial Community Response to Extreme Drought.</title>
<author>
<name sortKey="Veach, Allison M" sort="Veach, Allison M" uniqKey="Veach A" first="Allison M" last="Veach">Allison M. Veach</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Huaihai" sort="Chen, Huaihai" uniqKey="Chen H" first="Huaihai" last="Chen">Huaihai Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zamin K" sort="Yang, Zamin K" uniqKey="Yang Z" first="Zamin K" last="Yang">Zamin K. Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Labbe, Audrey D" sort="Labbe, Audrey D" uniqKey="Labbe A" first="Audrey D" last="Labbe">Audrey D. Labbe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Engle, Nancy L" sort="Engle, Nancy L" uniqKey="Engle N" first="Nancy L" last="Engle">Nancy L. Engle</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schadt, Christopher W" sort="Schadt, Christopher W" uniqKey="Schadt C" first="Christopher W" last="Schadt">Christopher W. Schadt</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Microbiology, University of Tennessee, Knoxville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microbiology, University of Tennessee, Knoxville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cregger, Melissa A" sort="Cregger, Melissa A" uniqKey="Cregger M" first="Melissa A" last="Cregger">Melissa A. Cregger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA creggerma@ornl.gov.</nlm:affiliation>
<country wicri:rule="url">Pays-Bas</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<wicri:noRegion>Tennessee</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSystems</title>
<idno type="ISSN">2379-5077</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Drought stress negatively impacts microbial activity, but the magnitude of stress responses is likely dependent on a diversity of belowground interactions.
<i>Populus trichocarpa</i>
individuals and no-plant bulk soils were exposed to extended drought (∼0.03% gravimetric water content [GWC] after 12 days), rewet, and a 12-day "recovery" period to determine the effects of plant presence in mediating soil microbiome stability to water stress. Plant metabolomic analyses indicated that drought exposure increased host investment in C and N metabolic pathways (amino acids, fatty acids, phenolic glycosides) regardless of recovery. Several metabolites positively correlated with root-associated microbial alpha-diversity, but not those of soil communities. Soil bacterial community composition shifted with
<i>P. trichocarpa</i>
presence and with drought relative to irrigated controls, whereas soil fungal composition shifted only with plant presence. However, root fungal communities strongly shifted with drought, whereas root bacterial communities changed to a lesser degree. The proportion of bacterial water-stress opportunistic operational taxonomic units (OTUs) (enriched counts in drought) was high (∼11%) at the end of drying phases and maintained after rewet and recovery phases in bulk soils, but it declined over time in soils with plants present. For root fungi, opportunistic OTUs were high at the end of recovery in drought treatments (∼17% abundance), although relatively not responsive in soils, particularly planted soils (<0.5% abundance for sensitive or opportunistic). These data indicate that plants modulate soil and root-associated microbial drought responses via tight plant-microbe linkages during extreme drought scenarios, but trajectories after extreme drought vary with plant habitat and microbial functional groups.
<b>IMPORTANCE</b>
Climate change causes significant alterations in precipitation and temperature regimes that are predicted to become more extreme throughout the next century. Microorganisms are important members within ecosystems, and how they respond to these changing abiotic stressors has large implications for the functioning of ecosystems, the recycling of nutrients, and the health of the aboveground plant community. Drought stress negatively impacts microbial activity, but the magnitude of this stress response may be dependent on above- and belowground interactions. This study demonstrates that beneficial associations between plants and microbes can enhance tolerance to abiotic stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32606021</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2379-5077</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>mSystems</Title>
<ISOAbbreviation>mSystems</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant Hosts Modify Belowground Microbial Community Response to Extreme Drought.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00092-20</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSystems.00092-20</ELocationID>
<Abstract>
<AbstractText>Drought stress negatively impacts microbial activity, but the magnitude of stress responses is likely dependent on a diversity of belowground interactions.
<i>Populus trichocarpa</i>
individuals and no-plant bulk soils were exposed to extended drought (∼0.03% gravimetric water content [GWC] after 12 days), rewet, and a 12-day "recovery" period to determine the effects of plant presence in mediating soil microbiome stability to water stress. Plant metabolomic analyses indicated that drought exposure increased host investment in C and N metabolic pathways (amino acids, fatty acids, phenolic glycosides) regardless of recovery. Several metabolites positively correlated with root-associated microbial alpha-diversity, but not those of soil communities. Soil bacterial community composition shifted with
<i>P. trichocarpa</i>
presence and with drought relative to irrigated controls, whereas soil fungal composition shifted only with plant presence. However, root fungal communities strongly shifted with drought, whereas root bacterial communities changed to a lesser degree. The proportion of bacterial water-stress opportunistic operational taxonomic units (OTUs) (enriched counts in drought) was high (∼11%) at the end of drying phases and maintained after rewet and recovery phases in bulk soils, but it declined over time in soils with plants present. For root fungi, opportunistic OTUs were high at the end of recovery in drought treatments (∼17% abundance), although relatively not responsive in soils, particularly planted soils (<0.5% abundance for sensitive or opportunistic). These data indicate that plants modulate soil and root-associated microbial drought responses via tight plant-microbe linkages during extreme drought scenarios, but trajectories after extreme drought vary with plant habitat and microbial functional groups.
<b>IMPORTANCE</b>
Climate change causes significant alterations in precipitation and temperature regimes that are predicted to become more extreme throughout the next century. Microorganisms are important members within ecosystems, and how they respond to these changing abiotic stressors has large implications for the functioning of ecosystems, the recycling of nutrients, and the health of the aboveground plant community. Drought stress negatively impacts microbial activity, but the magnitude of this stress response may be dependent on above- and belowground interactions. This study demonstrates that beneficial associations between plants and microbes can enhance tolerance to abiotic stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Veach</LastName>
<ForeName>Allison M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Huaihai</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Zamin K</ForeName>
<Initials>ZK</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Labbe</LastName>
<ForeName>Audrey D</ForeName>
<Initials>AD</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Engle</LastName>
<ForeName>Nancy L</ForeName>
<Initials>NL</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tschaplinski</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schadt</LastName>
<ForeName>Christopher W</ForeName>
<Initials>CW</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Microbiology, University of Tennessee, Knoxville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cregger</LastName>
<ForeName>Melissa A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA creggerma@ornl.gov.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSystems</MedlineTA>
<NlmUniqueID>101680636</NlmUniqueID>
<ISSNLinking>2379-5077</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus </Keyword>
<Keyword MajorTopicYN="N">bacteria</Keyword>
<Keyword MajorTopicYN="N">drought</Keyword>
<Keyword MajorTopicYN="N">fungi</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32606021</ArticleId>
<ArticleId IdType="pii">5/3/e00092-20</ArticleId>
<ArticleId IdType="doi">10.1128/mSystems.00092-20</ArticleId>
<ArticleId IdType="pmc">PMC7329318</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ecology. 2007 Jun;88(6):1354-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Dec;11(12):2691-2704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28753209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Aug 2;9(1):3033</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30072764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2016 Nov 29;7(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2015 Feb;17(2):316-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24571749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 Mar;225(5):1899-1905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31571220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1424-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25422041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Jun;88(6):1386-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):281-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Jan 7;529(7584):84-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26738594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2019 Aug;37(8):852-857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31341288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Aug 21;349(6250):860-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26184915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2012 Aug;93(8):1867-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22928415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(4):765-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Mar;90(3):649-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19341136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2018 Feb 12;6(1):31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29433554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Aug;207(3):591-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25772030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Jul;13(7):581-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27214047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2017 Jul 18;8(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28720730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Aug 14;454(7206):841-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18704079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jan 09;8:2223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29375600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2008 Nov;35(4):753-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18379856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Aug;73(2):197-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20528987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Nov 15;8:2224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29187837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Nov 21;13(11):e0206441</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30462680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Oct 29;4:6829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25351427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jul 29;333(6042):616-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Feb 06;115(6):E1157-E1165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29358405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 16;8(10):e76382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24146861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSystems. 2018 Jan 23;3(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29404422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Oct;166(2):701-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25118253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jul 29;6:547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Oct 31;5:579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25400630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 09;8:172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28232845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Aug;17(8):478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22564542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Feb;17(2):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24261594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2019 Jul;13(7):1776-1787</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30872806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Jul;23(13):3356-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24894495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4284-E4293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29666229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2017 Mar 1;93(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28115400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Nov;7(11):2229-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23823489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2019 Sep 11;7:e7463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31565550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Oct;10(10):999-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23995388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2019 May 18;7(1):76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31103040</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Veach, Allison M" sort="Veach, Allison M" uniqKey="Veach A" first="Allison M" last="Veach">Allison M. Veach</name>
</region>
<name sortKey="Chen, Huaihai" sort="Chen, Huaihai" uniqKey="Chen H" first="Huaihai" last="Chen">Huaihai Chen</name>
<name sortKey="Cregger, Melissa A" sort="Cregger, Melissa A" uniqKey="Cregger M" first="Melissa A" last="Cregger">Melissa A. Cregger</name>
<name sortKey="Engle, Nancy L" sort="Engle, Nancy L" uniqKey="Engle N" first="Nancy L" last="Engle">Nancy L. Engle</name>
<name sortKey="Labbe, Audrey D" sort="Labbe, Audrey D" uniqKey="Labbe A" first="Audrey D" last="Labbe">Audrey D. Labbe</name>
<name sortKey="Schadt, Christopher W" sort="Schadt, Christopher W" uniqKey="Schadt C" first="Christopher W" last="Schadt">Christopher W. Schadt</name>
<name sortKey="Schadt, Christopher W" sort="Schadt, Christopher W" uniqKey="Schadt C" first="Christopher W" last="Schadt">Christopher W. Schadt</name>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
<name sortKey="Yang, Zamin K" sort="Yang, Zamin K" uniqKey="Yang Z" first="Zamin K" last="Yang">Zamin K. Yang</name>
</country>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Cregger, Melissa A" sort="Cregger, Melissa A" uniqKey="Cregger M" first="Melissa A" last="Cregger">Melissa A. Cregger</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000207 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000207 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32606021
   |texte=   Plant Hosts Modify Belowground Microbial Community Response to Extreme Drought.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32606021" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020